Medical Cyber-Physical Systems: IoMT Applications and Challenges

Insup Lee, Jean Park, Sydney Pugh, Oleg Sokolsky, Amanda Watson, James Weimer

PRECISE Center, Department of Computer and Information Science, University of Pennsylvania

2022 Asilomar Conference on Signals, Systems, and Computers
IoMT Research

Medical Device Interoperability
“How to collect/exchange the RIGHT data?“
- VitalCore: platform for medical device dashboard, anomaly detector, clinical alert apps.
- Raproto: Open-source, rapid prototyping platform for data collection via smartwatches
- Secure/tamper-proof logging

Clinical Decision Support
“How to interpret data for clinicians?“
- Suppressing events: smart alarms/alerts
- Detecting events: T1D meal ingestion
- Estimating/modeling state: T1D patient behavior
- Predicting outcomes: ACL Retear

Device Coordination / Closed-Loop
“How to automatically adjust clinical care”
- Mechanical ventilator weaning
- Fall prediction
- Motion detector using PulseOx

(MCPS) IoMT + SaMD
Challenges

1. IoMT/MCPS should be implemented in such a manner to reduce clinician load, not add to it.

2. Because of the reliance on high-quality data the first and often the most time-consuming step in many research endeavors is to build a data collection system.

3. Medical applications require high quality data from reliable, human-safe devices. Further, they present data storage issues and need ample processing and analysis to create useful applications.
Infrastructure: VitalCore

Analytics & Support Dashboard for Medical Device Integration

- 3000+ Integrated Medical Devices
- 36 HL7 & Application Servers
- 13 Facilities
- 7 Vendor Network

And growing...
Infrastructure: Raproto

Open-source, rapid prototyping platform for data collection via smartwatches
Applications: SmartAlarms

- Medical device alarms are non-informative
 - between 80% and 99% of all alarms are false
- Clinicians have developed alarm fatigue and may not respond to alarms
 - A top 10 health technology hazard since 2007
- Solution: Smart alarm suppression
 - Maximally suppress alarms non-informative alarms without suppressing actionable alarms
- Initially consider low SpO2 alarms
 - “Reducing Pulse Oximetry False Alarms Without Missing Life-Critical Events” (CHASE 2018)
 - ECRI 2019 #7 Health Tech Hazard: Improper Customization of Physiologic Monitor Alarm Settings May Result in Missed Alarms
Human-in-the-loop MCPS/IoMT

• Clinicians and/or patients operate and coordinate medical devices
• Analysis of safety and effectiveness needs to take operator behavior into consideration
 • How much the operator trusts the system
 • When and how operator interferes with automation
• Case study: patient-operated insulin pump
 • Smart pump suggest doses
 • Patients input carb intake
 • Patients can accept or adjust dose
 • How does behavior affect treatment?
RT-ACL: Identification of High-Risk Youth Patients and their Most Significant Risk Factors to Reduce Anterior Cruciate Ligament Reinjury Risk

Amanda Watson¹, Pengyuan Lu¹, Elliot Greenberg¹, J. Todd R. Lawrence², Theodore J. Ganley², Insup Lee¹, James Weimer¹

University of Pennsylvania¹, Children’s Hospital of Philadelphia

Clinical Decision Support

Aim: Develop a decision support system that is easy-to-use and is trusted by clinicians to aid in decision making for ventilation weaning

Based on votes from the expert created features and labeling functions. A risk stratification is applied that features an increasing retear rate as patients move through the bins.

Binning

Group patients by how likely they are to retear

Feedback System

Our approach: Leverage expert knowledge to intelligently design features that a predictive of risk. Combine these features using machine learning algorithms. Classify patient risk of retear as high medium or Low.

Risk Factor Evaluation

Training Dataset

441 Patients

Dataset: Analyzed Clinical Notes

Category # Missing Example
Demographics 6 5% Age, DOB
Injury Information 2 2% Data, Spirit Played
Family History 2 43% Relative with ACL Tear?
Surgery Information 20 9% Type of Reconstruction
Recovery Information 4 14% Date of Return to Activity
Re-tape Information 7 59% Time to Repeat ACL Tear
Rehab Information 213 79% Triple Hop LSI

Risk Factor Table

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>High, Medium, Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at Injury</td>
<td>1</td>
</tr>
<tr>
<td>Injury Type</td>
<td>1</td>
</tr>
<tr>
<td>Activity Level</td>
<td>1</td>
</tr>
<tr>
<td>BMI</td>
<td>1</td>
</tr>
<tr>
<td>Vertical Hop</td>
<td>1</td>
</tr>
<tr>
<td>Hamstrings/Quads</td>
<td>1</td>
</tr>
</tbody>
</table>

Conclusion

- The RT-ACL system identifies high-risk patients and determines their most significant risk factors to reduce ACL reinjury risk: High risk patients are 4.6x as likely to retear as low risk patients
- Evaluation on 441 youth patients, 8-21 years of age that underwent an ACL reconstruction at the Children’s Hospital of Philadelphia
- Next Steps:
 - Multi-year Clinical Validation at Children’s Hospital of Philadelphia
 - Generalized System Development
 - Integration into the EHR

Motivation

- 200,000 ACL Tears Annually in the US
- 1 in 60 Youth Athletes
- $2 Billion Annually in Medical Costs

Aim: Identify patients at high risk for ACL Retear

- Motivation

- Research Overview

- Data Collection

- Clinical Decision Support
Levels of Autonomy

Increasingly human-performed tasks
- Caregiver(s) performs the task

Increasingly machine-performed tasks
- Caregiver(s) is involved in task and technology aids and enhances effectiveness
- Caregiver(s) initiates a task and has discrete control over technology that executes it
- Caregiver(s) defines and initiates a task & technology executes the task with caregiver supervision
- Technology decides course of action and executes it with caregiver supervision
- Technology decides course of action and executes it without supervision

No autonomy
Technology Assistance
Task Autonomy
Conditional Autonomy
High Autonomy
Full Autonomy
Conclusion

• We are pushing towards a vision of the future in which technology autonomously provides comprehensive medical care.

• As we strive towards this reality, we have developed the IoMT and MCPS, but we still have many more challenges to surpass.