Microsleep Prediction Using an EKG Capable Heart Rate Monitor

Amanda Watson & Gang Zhou

Introduction

Microsleep is a short period of sleep which can last for up to 2 minutes where an individual fails to respond to outside sensory input. Because of the lapsed time, microsleep can create dangerous situations, for example when a user is driving a car, any microsleep can result in unsafe situations or even death.

System Architecture

The system architecture includes wearable electrocardiogram monitoring which continuously captures EKG data, a low pass filter to remove high frequency noise, and a microsleep detection module. This module calculates the pNN50 value and uses it to determine if the user is drowsy. If the pNN50 value exceeds a certain threshold, it alerts the user and predicts future microsleeps.

pNN50 Calculation

pNN50: number of pairs of consecutive NN intervals with a difference greater than 50 milliseconds.

\[pNN50 = \frac{\text{number of pairs of consecutive NN intervals with a difference greater than 50 milliseconds}}{n} \times 100 \]

Microsleep Detection

High levels of drowsiness are the first sign that a microsleep will occur. While we classify the individual as drowsy above a pNN50 value of 15, the higher the score the drowsier and vice versa.

Microsleep Prediction

Once we know a microsleep has occurred, we predict when the next microsleep will occur using the change in drowsiness. To do this we calculate the change in pNN50 values (\(\Delta p \)) after the last microsleep and the change in time (\(\Delta t \)) from the last microsleep to the current microsleep.

We calculate a regression model using 9 of the 10 data sets. We calculate a linear, quadratic, and cubic model to find which has the best fit for prediction.

Linear model:

\[\Delta t = 13.060 + 5.2257\Delta p \]

Quadratic Model:

\[\Delta t = 10.444 + 10.890\Delta p - 0.9107\Delta p^2 \]

Cubic Model:

\[\Delta t = 7.397 + 23.135\Delta p - 6.549\Delta p^2 + 0.05405\Delta p^3 \]

Evaluation

We evaluated each of our models using the final data set containing 50 possible microsleep predictions. We consider a microsleep correctly predicted if the prediction is within a 30 second window of the actual microsleep.

Application Scenarios

1. Automated System – alert the user before microsleep occurs.
2. Productivity – alert the user when it is in their best interest to sleep, even if it is not a full night’s rest to increase productivity and quality of work.
3. Steering Wheel Application – Adding EKG sensing fabric to a steering wheel, will allow a noninvasive system to predict microsleep while driving.

Conclusion

Because of the repercussions of even a short episode of microsleep, it is necessary that we learn to track it and alert the user to an occurrence or the probability of a near future occurrence. The results of our study suggest that EKG data can be used to accurately detect and predict microsleep.

This work was supported by U.S. National Science Foundation under grant CNS-1253506 (CAREER).