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Abstract
Opioid overdose is an escalating global epidemic,
affecting 16 million individuals. Lack of overdose
detection and slower response times are the lead-
ing causes of overdose deaths. During a fatal opi-
oid overdose, the user exhibits motionlessness, lack
of breathing, and hypoxemia (oxygen saturation
drops). In this paper, we discuss the development of
a shoulder-based wearable overdose detection de-
vice that monitors hypoxemia, motion, and respira-
tion. The device’s design considers the underserved
socio-economic population and their psychologi-
cal contexts. However, conventional approaches
to detecting an overdose typically focus on a sin-
gle biomarker. To address this, we have developed
a robust capsule networks based machine learning
(ML) model, OxyCaps that integrates oxygen satu-
ration, respiration rate, and motion to classify dif-
ferent levels of hypoxemia. This also helps im-
prove patient adherence by decreasing the chances
of false positive alerts. To determine a hypoxemic
state, the model considers various features like skin
tone, body physiology, motion, and photoplethys-
mography (PPG) signals. In the absence of real-
world opioid overdose data, our research leverages
data collected by our device from 19 patients ex-
periencing sleep apnea, exploiting the parallels be-
tween overdose and apnea biomarkers. Our dataset
provides a novel compilation of raw PPG and mo-
tion signals detected from the shoulder. Our model
classifies 3 stages of hypoxemia with an average
accuracy of 92%, specifically achieving a high re-
call of 0.98 for the critical hypoxemic state that is
crucial in determining an overdose.

1 Introduction
The devastating impacts of the global opioid epidemic res-
onate across societies and public health systems, with the an-
nual death toll due to opioid overdose (OD) reaching a stag-
gering 120,000 worldwide. An estimated 16 million [Chang
et al., 2018] suffer from opioid use disorder (OUD), high-

lighting the urgent need for innovative and effective interven-
tions to curb this crisis. However, the nature of fatal overdose
events poses substantial challenges to effective data collec-
tion, compounding the difficulties in understanding, predict-
ing, and preventing these tragedies. These obstacles become
more pronounced given that more than half of opioid users are
known to consume opioids when alone [Ogeil et al., 2018],
further limiting the chances of timely detection and interven-
tion during an overdose. Despite these grim realities, there is
a silver lining: research indicates that 76% of those suffering
from opioid use disorder would willingly wear a device on the
shoulder capable of detecting an overdose event and alerting
emergency responders [Kanter et al., 2021a], provided it is
easily concealable. Guided by this finding, our research ex-
plores developing and deploying a shoulder-based wearable
device, addressing the opioid epidemic from a unique tech-
nological and social impact perspective.

The primary focus of this paper is to introduce a novel
capsule network [Sabour et al., 2017] OxyCaps architecture
designed to classify hypoxemia during an overdose modeled
using sleep apnea data. The severity of hypoxemia is clas-
sified into 3 levels based on SpO2 – Normal (96%-100%),
Moderate (92%-95%), and Severe (91%-88%). Clinically, a
healthy individual or COPD (Chronic Obstructive Pulmonary
Disease) patient with SpO2 levels less than 92% and 88% re-
spectively are considered hypoxemic [Lee et al., 2000]. Dur-
ing an opioid-OD oxygen saturation (SpO2), motion and res-
piration rate are affected due to opioid-induced respiratory
depression [Boyer, 2012a]. These biomarkers are used as
overlying features to determine the level of hypoxemia ex-
perienced by the patient. Our proposed device takes the form
of a sensor that adheres to the deltoid, offering a discreet yet
effective monitoring solution according to our opioid pop-
ulation’s needs. Leveraging the capabilities of optical and
motion sensors, this device generates photoplethysmography
(PPG) and 6-axis motion signals, which can be processed to
estimate the user’s oxygen saturation, respiration rate, and
motion levels. These biomarkers, coupled with additional
generated features, form the foundation for our overdose de-
tection system using hypoxemia as our indicator.

Capsule networks are adept at discerning spatial relation-
ships among features and understanding temporal hierar-



chies, making them particularly effective at identifying pat-
terns spanning various time scales. Such temporal intrica-
cies might arise from filtering processes inherent to standard
pulse oximeters used in collecting labeled data or from physi-
ological lags across different sensing areas (finger and shoul-
der). This also enables OxyCaps to better handle temporal de-
lays between the onset of respiratory depression and drops in
SpO2 during apneic events. To train the OxyCaps model for
precise classification of hypoxemia indicative of overdoses,
we sourced our dataset from patients diagnosed with sleep
apnea using custom hardware. One of the biggest challenges
in opioid-OD research is the scarcity of clean data pertaining
to actual overdose events [Campbell et al., 2023]. Instead of
relying on hard-to-obtain data from fatal overdose incidents,
we have chosen to build our dataset from patients suffering
from obstructive sleep apnea (OSA). Symptoms of OSA —
hypoxemia, decreased breathing, and motionlessness during
an apneic event — bear significant resemblance to those of
an opioid-OD [Boyer, 2012b], making OSA patient data an
appropriate surrogate for modeling purposes. The presence
of reactive body movements post-apneic events in OSA pa-
tients creates a prominent differentiator between OSA and
opioid-OD-related hypoxemic events. During an opioid-OD,
the individual is completely motionless, and their hypoxemic
state tends to increase if the reversal agent naloxone is not
administered immediately. Whereas, a patient with OSA will
recover from their apneic event during which a resumption of
breathing is exhibited and their hypoxemic state normalizes.
This differentiator helps us use OSA patients as a reasonable
model to develop an overdose classifier.

There is a critical need for a device that can not only de-
tect opioid-ODs but also one that patients are willing to wear.
To foster greater acceptance and utilization, we integrated
a patient-centric iterative approach into our design process
based on prior research of this underserved community [Kan-
ter et al., 2021b]. Through a combination of interviews, in-
formal focus groups, and surveys, we addressed the unique
needs and concerns of the OUD community. The result was
a modular, easy-to-wear, and discreet shoulder-based sensor
whose comfort and accuracy levels we validated using sleep
apnea patients. The ability to detect overdoses via shoulder
monitoring will also enable seamless integration with autoin-
jector technologies in the future that administer naloxone to
reverse fatal overdoses [Chan et al., 2021; Imtiaz et al., 2021;
Dhowan et al., 2019; Lingamoorthy et al., 2023]. At the end
of the study, the patients were surveyed to better understand
the wearability and comfort of our shoulder device during
sleep compared to commercial pulse oximeters and OD mon-
itors. The shoulder device was ranked higher than the com-
mercial device in terms of comfort and wearability due to its
small size, location, and application using an adhesive.

Our contributions are summarized as follows:

1. Development of a novel capsule network implementa-
tion OxyCaps with routing to capture spatial information
between features for estimating hypoxemia.

2. Evaluation of the algorithm using over 150 hours of
PPG, pulse oximetry, and motion data collected from 19
sleep apnea patients to simulate overdose events caused

by sleep apnea episodes.

3. Provision of the uniquely acquired shoulder-based PPG
and motion signal dataset from sleep apnea patients for
public access [Kumar, 2024].

As our understanding of the opioid epidemic continues to
evolve, the role of artificial intelligence in combating this cri-
sis becomes increasingly evident. Our research represents a
step forward in this domain, harnessing AI to improve data
collection methods, develop nuanced problem models, and
facilitate real-world testing and evaluation. By focusing on
these key areas, we aim to contribute meaningfully to ongo-
ing efforts to mitigate the devastating social impacts of the
opioid crisis. Our study underscores the promise of AI-based
solutions in addressing public health challenges, using inno-
vative technology to enhance the safety and well-being of in-
dividuals living with opioid use disorder. By introducing a
wearable, patient-centric device capable of detecting immi-
nent overdose events, we can help pave the way for future
interventions and policies to combat the opioid crisis more
effectively. Our findings also carry broader implications for
the field of medical technology and AI, highlighting the po-
tential of these tools in creating more responsive, inclusive,
and effective healthcare solutions.

2 Related Work
In this section, we discuss the technologies and literature sur-
rounding the development of a patient-friendly overdose de-
tector. First, we describe the implementations of sleep apnea
data to model an opioid-OD event. Then, we detail OUD
patients’ willingness towards such technologies and ongoing
work to make devices more patient-centric. Finally, we dis-
cuss the current solutions in overdose detection and reversal.

2.1 Hypoxemia Estimation Using ML
Hypoxemia plays a vital role in identifying an overdose due
to Opioid-Induced Respiratory Depression (OIRD). As men-
tioned earlier, the scarcity of clean data pertaining to actual
overdose events makes it hard to model [Campbell et al.,
2023]. For this reason, we have modeled our hypoxemia clas-
sifier around obstructive sleep apnea (OSA) patients experi-
encing apneic events. Traditional data collection on overdose
events faces ethical and practical hurdles, leading us to model
our approach on OSA patients. OSA episodes offer paral-
lel biomarker trends to OIRD, albeit with distinctive motion
patterns. During an opioid-OD, the individual is completely
motionless, and their hypoxemic state tends to increase if
the reversal agent naloxone is not administered immediately.
Whereas, a patient with OSA can recover from their apneic
event during which a reactive body movement is exhibited.
This differentiator helps us to use OSA patients as a reason-
able model while not misidentifying a person with OSA as
having an overdose.

To ensure accurate detection of opioid-OD-induced hy-
poxemia, we implemented an ML-based approach that uti-
lizes biomarkers estimated from PPG and motion signals.
Lazazzera et al. [Lazazzera et al., 2021] developed an ap-
nea and hypopnea classifier that trained on PPG and SpO2



datasets focusing on changes in PPG amplitude fluctua-
tions(DAP) and oxygen desaturation. Their Fine Gaussian
Support Vector Machines model provided a 75.1% accuracy
in detecting apneas and hypopneas. Mahmud et al. [Mahmud
et al., 2022] focused purely on PPG signals to determine 3
classes of hypoxemia severity: normal, moderate, and criti-
cal. The Res-SE-ConvNet deep neural network(DNN) pro-
posed had classified hypoxemia with 96.5% accuracy. Their
implementation of convolution neural networks(CNNs) to
achieve state-of-the-art accuracy helped incorporate OxyCaps
into our classifier to better handle temporal hierarchies. Fi-
nally, Hoffman et al. [Hoffman et al., 2022] took a novel ap-
proach instead of PPG-based inputs through optical sensors
and used a smartphone camera in a hypoxemia study. Their
study implemented CNNs to classify hypoxemia levels based
on predicted SpO2 from images collected by the device. They
were able to screen hypoxemia as SpO2 below 90% with an
average sensitivity and specificity of 81% and 79%, respec-
tively. It is important to note that these models have sourced
their data from clinical establishments and PPG signals cap-
tured from the fingertip, a canonical site with high blood per-
fusion. Our model is built on PPG data sourced from the
shoulder, a non-canonical site. Although this results in nois-
ier signals requiring additional filtering, feature engineering,
and model tuning, it incorporates OUD patient design needs,
thereby increasing willingness to wear the device.

2.2 Patient-Centric Design Principles
Understanding the needs and preferences of the OUD pop-
ulation is crucial when designing life-saving technologies.
This section delves into the willingness of OUD patients to
adopt overdose monitoring devices and the design consid-
erations that can enhance their acceptance. Ahamad et al.
[Ahamad et al., 2019] conducted interviews with 1061 OUD
patients, of which 54% were open to wearing an overdose
detection device. However, this study did not include tangi-
ble prototypes, offering only a general chest-based detection
site for consideration. In contrast, Kanter et al. [Kanter et
al., 2021b] achieved a higher willingness rate of 76% from
their survey of 97 patients. By presenting tangible device pro-
totypes, they provided insights into potential device appear-
ances, placement options, and functionalities. Their findings
emphasized that a discreet shoulder-mounted device, capable
of monitoring and potentially administering naloxone, would
be more favorably received. The shoulder’s suitability as a
canonical injection site further underscores its potential for
integrated injector systems. But Campbell et al. [Campbell
et al., 2023] highlighted the challenges in reliably capturing
overdose biomarkers using wearables, even under controlled
conditions, highlighting the need for additional study.

The importance of patient-centered design cannot be
overstated, especially as OUD disproportionately affects
marginalized communities. The design must transcend
the medical functionality to consider the socio-economic
and psychological contexts of the end-users. The Masimo
Halo [Knopf, 2023], an FDA-approved device for monitoring
the risk of opioid-OD, represents a significant advancement in
this field. However, its design, encompassing a smartphone, a
home medical hub, and a single-use sensor worn on the wrist

and finger, may not fully meet the needs of the economically
disadvantaged or those without stable housing. The device’s
visibility may inadvertently contribute to the stigma associ-
ated with OUD, potentially deterring its use among those
most in need. Recognizing these limitations, our research
aims to focus on improving reusability, affordability, and con-
cealability, ensuring that the device is both accessible and ac-
ceptable to all individuals at risk of opioid-OD.

2.3 Opioid Overdose Monitoring
The opioid crisis has spurred significant innovation in sens-
ing methodologies and exploration into additional on-body
sites for sensor placement for overdose detection. Nandaku-
mar et al. [Nandakumar et al., 2019] leverages the sonar ca-
pabilities of mobile devices to monitor the respiration rate of
OUD patients, offering a software-centric solution that capi-
talizes on patients’ existing devices. Dhowan et al. [Dhowan
et al., 2019] employs ECG sensors positioned on the shoul-
der to track respiration rate. This system is integrated with
a shoulder device that can administer naloxone from a sur-
gically implanted reservoir beneath the skin. Imtiaz, Ban-
doian, and Santoro et al. [Imtiaz et al., 2021] shift the fo-
cus to SpO2 detection on the arm, targeting hypoxemia as an
indicator rather than respiratory depression. Each of these
studies introduces a distinct approach, focusing on a spe-
cific biomarker, body location, and hardware configuration.
A paramount concern among OUD patients is the inadver-
tent administration of naloxone or unintentional alerts to by-
standers during non-overdose scenarios. In our work, we
address this apprehension by leveraging multiple biomarkers
for hypoxemia classification. By synthesizing insights from
these biomarkers, we aim to reduce false positives, thereby
increasing willingness and trust in the technology.

3 Data Collection and Preprocessing
This section outlines the study design, the hardware needed
for data collection, and subsequent data refinement. The
collected and preprocessed data can be made publicly avail-
able [Kumar, 2024]. We first discuss the experimental setup
involving sleep apnea patients and the connection between
biomarkers of sleep apnea and overdose. Then, we exam-
ine the custom hardware developed specifically to acquire
biomarker data such as PPG and motion signals from these
patients off the shoulder. Finally, we discuss the steps in-
volved in preprocessing, denoising, and feature extraction.

3.1 Study Design
For this experiment, we monitored 19 patients overnight dur-
ing their scheduled sleep studies at a designated sleep clinic.
The study targets sleep apnea patients because of the strik-
ing similarities between apneic episodes and opioid-ODs.
In both scenarios, patients exhibit motionlessness, ceased
breathing, and decreased oxygen saturation [Boyer, 2012a;
Berry et al., 2012]. However, OSA patients recover from
apneic events within a short period of time while exhibiting
resumption of breathing. Motion sensors can capture the re-
sumption of breathing and help differentiate apneic episodes
between sleep apnea and opioid-OD.



Figure 1: System Architecture (1) Shoulder-based motion & PPG sensor device (2) Normalization of LEDs based on skin tone and physiology
(3) Sleep apnea patient data collection (4) Data analysis pipeline (5) OxyCaps hypoxemia classifier (6) Alert mechanism

Prior to the study, we collected demographic and physio-
logical data, including age, race, gender, BMI, and skin tone.
Information pertaining to skin tone and physiological details
is crucial when evaluating the efficiency of our device’s op-
tical normalization algorithm upon initial wear. Previously,
Lingamoorthy et al. [Lingamoorthy et al., 2023] outlined the
process for optical sensor normalization across various sub-
jects. Each patient was equipped with two pulse oxime-
ter devices for monitoring: our custom-designed shoulder-
based device and a commercial FDA-approved finger-based
device. Our primary objective was to gather raw biomarker
signals through accelerometers and optical sensors, thereby
constructing ML models that can estimate hypoxemic states.
The commercial device approved by the FDA to collect SpO2
levels was used to create a labeled dataset. A key focus was
on SpO2 levels, especially drops denoting hypoxemic events,
which would simulate conditions resembling an opioid-OD.

3.2 Device Hardware
Detecting opioid-ODs on the shoulder enhances OUD pa-
tients’ willingness to use a concealable monitoring de-
vice [Kanter et al., 2021a]. As such, we designed custom
hardware as seen in Figure1. The device was used to col-
lect data and accurately detect biomarkers pertaining to an
overdose on a non-canonical site. Our device for this study
non-invasively collects PPG and motion data off the shoul-
ders of sleep apnea patients along with a commercial finger
pulse oximeter. The oximeter records pulse rate and SpO2
every second. The oximeter readings are used to label the
dataset into 3 stages of hypoxemia [Krejčı́ et al., 2018], which
closely translates to opioid-OD levels.

1. Normal : SpO2 range 96% to 100%.
2. Moderate : SpO2 range 92% to 95%.
3. Severe: SpO2 range 88% to 91%.

The devices use an accelerometer and optical sensor. The
6-axis Inertial Measurement Unit is used to measure 3D ac-
celerometry and gyroscopic data to determine the individual’s

respiration and motion states. The 2-channel optical sensor
collects raw PPG data through reflectance pulse oximetry that
is used to estimate oxygen saturation, respiration rate, and
motion. The optical sensor uses red and infrared (IR) light-
emitting diodes (LED) of wavelengths 660nm and 880nm to
illuminate the deltoid and measure the light reflected using
a photodetector. The raw red and IR PPG samples, com-
bined with 6-axis motion data, are captured at 25Hz and saved
locally in binary format. The device saves LED drive cur-
rent as an 8-bit intensity value, which adjusts automatically
based on the patient’s skin tone and physiology. To auto-
matically adjust, a one-time calibration occurs by iterating
through light intensities until the maximum perfusion index
is reached [Lingamoorthy et al., 2023].

3.3 Preprocessing and Denoising
Data from the test device, collected across all patients, is first
decoded and merged into a single file. We then removed sam-
ples taken when the patient did not wear either device. This is
determined using correlation values between red and IR PPG
signals. The commercial device’s data is upsampled using
a forward fill method due to the infrequent change in SpO2.
Data points with motion artifacts are discarded and are deter-
mined by high acceleration magnitude(Rmotion) from Equa-
tion 1.

Rmotion =
√

x2
axis + y2axis + z2axis (1)

We filter data points with SpO2 values below 88% from
the commercial device, focusing on the early onset of hy-
poxemia, typically marked by values below 92% [Lee et al.,
2000]. Finally, signals with high noise are discarded based
on signal quality index (SQI) calculated using the skewness
factor within an 8-second window [Elgendi, 2016]. Tempo-
ral discrepancies between the commercial and test devices
due to different start times are rectified by aligning the pulse
rates from both devices. For PPG signal processing, we ap-
ply a 3rd-order Butterworth band-pass filter with cutoff fre-
quencies between 0.5 Hz and 3 Hz to both red and infrared



Figure 2: OxyCaps model architecture

wavelengths [Liang et al., 2018] to remove baseline drifts and
high-frequency noise. We then segment the data into eight-
second epochs, each containing 200 samples [Shuzan et al.,
2023]. SpO2 values are derived as a feature in the form of
Ratio of Modulation or (RSpO2) as seen in Equation 2

RSpO2
=

(ACRED

DCRED

)/(ACIR

DCIR

)
(2)

Here ACRED, DCRED, AC IR and DC IR are the AC and DC
components of the PPG signal for the red and the infrared
wavelengths, respectively [Aguirregomezcorta et al., 2021].
These components are determined by evaluating the standard
deviation and mean of each epoch and are used as features for
the model. Healthy individuals typically have an SpO2 range
of 95% to 100%. This causes a bias in our dataset, as apneic
events, which deviate from this range, only occur sporadically
during a patient’s sleep study. We downsample based on the
least frequent SpO2 value to address this bias.

4 Methods
In this section, we delve into feature engineering, describe the
scaling methods applied to the dataset, and discuss the pro-
posed OxyCaps architecture employed for hypoxemia classi-
fication, highlighting their specific hyperparameter settings.

4.1 Features Engineering
Feature engineering plays a pivotal role in crafting a resilient
and efficient model. In our study, we generate new features
from the raw accelerometer and optical sensor signals. Upon
preprocessing the data sourced from sensors, we derive over-
laying features pertinent to motion, such as motion levels and
respiration metrics. We derive oxygen saturation, respiration
features, skin tone, and physiology from PPG signals. Fi-
nally, we used Standard scaling to normalize the data due
to its consistent handling of outliers compared to other tech-
niques like MinMax or Robust. Our feature processing meth-
ods can be seen in our open-source repository [Kumar, 2024].

• Oxygen Saturation: pulsatile (AC), non-pulsatile (DC),
and the ratio between red and IR signals from PPG

• Skin Tone and Physiology: Red and IR LEDs current
draw during the normalization process.

• Motion Levels: (Rmotion) from x, y, and z axis accelerom-
eter signals calculate motion intensity.

• Respiration Features: Respiration rate, intensity, and
duration of inhalation and exhalation.

Recall
Features Normal Moderate Severe Accuracy

w RR 0.90 0.87 0.98 0.92
w/o RR 0.66 0.63 0.81 0.70

Table 1: OxyCaps hypoxemia classification Respiration Rate (RR)
feature importance

Respiration features are calculated using optical and mo-
tion signals to increase reliability if one signal shows low
SQI. PPG signals provide blood volume change [Pimentel
et al., 2016] while accelerometry gives us thoraxial mo-
tion [Chan et al., 2021]. Combining both sensors, we gener-
ate respiration rate, intensity, and duration of inhalation and
exhalation through filtering and peak detection algorithms.
We also included respiration features time shifted by 10 sec-
onds in the past to track relative changes. These features are
vital in increasing hypoxemia classification across all evalu-
ation metrics. Table.1 shows how the OxyCaps model im-
proved recall, the ability to correctly identify classes by 36%
for Normal, 38% for Moderate, and 21% for severe hypox-
emic classes. The added features also improved the overall
accuracy by 31%.

4.2 Proposed Architecture
Our proposed capsule network, OxyCaps, shown in Figure 2,
is a variant of the capsule networks proposed in [Sabour et
al., 2017]. It has four layers: convolutional layer, primary
capsule layer, high-level fully connected capsule layer, and
fully connected layer as an output layer. In the first convo-
lutional layer, we utilize a non-linear ReLU activation func-
tion, 32 channels, 3 × 3 kernel size with a stride of 2, and
padding set to 0. This layer helps extract salient features
from preprocessed features (which are reshaped to (1,18,18))
from optical and motion sensors. Then, the extracted fea-
tures are fed to the primary capsules layer, whose main role
is to replace the scalar-output feature detectors of CNNs with
vector-output capsules to preserve the instantiated parame-
ters, such as the local order of features of IR and red PPG
signals. It consists of 4 capsules, and each capsule is a con-
volutional layer with 32 channels, 3 × 3 kernel size, a stride



of 1, and padding set to 0 and gives an output of (32×6×6),
all up, the primary capsules layer gives an output in the form
of (Batch size, 4, 32, 6, 6). To introduce non-linearity in the
primary capsules layer, we used the Squash function as de-
fined in Equation 3.

Squash(x) =
∥x∥2

1 + ∥x∥2
· x

∥x∥
(3)

The penultimate layer has a single 16-D capsule and re-
ceives an input of (Batch size, 4, 32, 6, 6) from the primary
capsules layer and provides an output (Batch size,Nc, 16).
Primarily, each capsule in the penultimate layer, whose length
of the activity vector designates the compressed form of mo-
tion and sensor-based features, receives input from all the
capsules in the layer below. Here, the Nc represents the num-
ber of capsules in the penultimate layer, which is set to 10
(found during the tuning of the model). Then, we apply flat-
tening to the receiving input (Batch size,Nc, 16) and feed
to the output layer having three neurons with a linear trans-
formation to predict 3 stages of hypoxemia.

As mentioned in [Sabour et al., 2017], the capsule net-
work permits the networks to automatically learn child-parent
(or part-whole) relationships. In the hypoxemia classification
task, different samples from a patient with the same SpO2
category are supposed to have similar skin tones but with dif-
ferent features. In this paper, we have done transformation
matrices to create a prediction vector (vote) ûj|i from its child
capsule i to the parent capsule j. The first one shares a weight
matrix (Wij) between each child capsule (ui) and parent cap-
sule (vj). Properly, each corresponding vote can be calculated
by:

ûj|i = Wijui + b̂j|i ∈ Rd (4)

where b̂j|i is a capsule bias term.
In the architecture, the routing is done between the primary

capsule layer and the high-level fully connected capsule layer.
The main idea of using dynamic routing is to build a non-
linear map in a repetitious way to confirm that the output of
each capsule is directed to its corresponding parent in the sub-
sequent layer. Also, the connection strength can be increased
or decreased between capsules via dynamic routing, which
is more efficacious with respect to earliest routing strategies
like max-pooling in CNN, which detects whether a feature
is present in any position but loses spatial information about
the feature. In our case, we have used the same routing al-
gorithm as proposed [Sabour et al., 2017]. The capsules in
the penultimate layer below are flattened and fed into a fully
connected output layer containing three neurons with a linear
transformation to predict hypoxemia severity. In our exper-
iment, all the routing logits (bij) are initialized to zero, and
the number of iterations is kept to 3. Our implementation
is in Pytorch [Paszke et al., 2019] with a batch size of 512,
epochs set to 101, AdamW optimizer (learning rate 1e-3) with
a cross-entropy loss function.

5 Results and Evaluation
In this section, we assess existing ML models that have
traditionally been employed for hypoxemia detection using

Figure 3: OxyCaps confusion matrix

only PPG data from canonical sites [Mahmud et al., 2022;
Hoffman et al., 2022; Lazazzera et al., 2021]. We extend this
evaluation to newer sites, like the shoulder, and compare the
performance of other ML models against OxyCaps.

5.1 Evaluation Metrics
To validate the performance of our hypoxemia classifier, we
use a suite of evaluation metrics, each offering a unique per-
spective on the model’s performance. This section delves into
the specifics of each metric and its significance in the con-
text of our study. The metrics used are Precision, Recall, F1-
Score, and Accuracy.

• Precision: Assesses reliability in predicting hypoxemia
stages, reducing false alarms.

• Recall: Measures capability to identify all hypoxemia
instances, minimizing missed detections.

• F1-Score: Compares classifiers, balancing false posi-
tives and negatives, important for imbalanced classes.

• Accuracy: Evaluates overall correct classification.

5.2 Cross-validation
To assess the resilience of our hypoxemia classifier, we com-
pare our OxyCaps methodology with existing models and
employ a 5-fold cross-validation, mirroring the approach
taken in other approaches [Lazazzera et al., 2021; Mahmud et
al., 2022]. This method provides a comprehensive evaluation
by partitioning the dataset into subsets and iteratively training
and testing the model. We adopted this strategy to optimize
the use of our training data and to prevent overfitting.

Next, we discuss the performance of the OxyCaps model
as compared to other ML models and approaches. Empirical
studies on models—ranging from RandomForest to advanced
neural networks as seen in Table.2. These models, however,
did not match the performance of OxyCaps, which shows al-
most 7% better handling of hypoxemia classification. Oxy-
Caps shows proficiency in preserving the spatial hierarchy of
features, which helps interpret complex physiological signals.
Its vector-based capsules effectively encode the probability



Model Precision Recall F1 Accuracy

RandomForest 0.88 0.88 0.88 0.88
ExtraTrees 0.88 0.88 0.88 0.88
LightGBM 0.84 0.84 0.84 0.84
XGBoost 0.88 0.88 0.88 0.88
CatBoost 0.85 0.85 0.85 0.86

HistGradient 0.89 0.89 0.89 0.90
3-Layers ANN 0.89 0.89 0.89 0.89

OxyCaps 0.92 0.92 0.92 0.92

Table 2: Empirical study 5-Fold cross-validation

Class Precision Recall F1-Score

Normal 0.91 0.91 0.91
Moderate 0.89 0.88 0.89

Severe 0.96 0.98 0.97

Table 3: OxyCaps hypoxemia classifier 5-Fold CV

and properties of features, such as motion patterns from ac-
celerometry and individual physiological signatures, which
are pivotal for hypoxemia classification. OxyCaps can ac-
curately classify levels of hypoxemia with 92% accuracy off
the shoulder while maintaining high sensitivity towards false
positives is critical for determining an opioid-OD. Ensuring
our false positive rates are low is important to maximize will-
ingness to wear an overdose alert device.

The other ML [Mahmud et al., 2022; Hoffman et al., 2022;
Lazazzera et al., 2021] based approaches that were dis-
cussed above incorporate PPG signals to classify hypoxemia.
Lazazzera et al. [Lazazzera et al., 2021] developed an ap-
nea and hypopnea classifier using Fine Gaussian Support
Vector Machines with an accuracy of 75.1%. The Res-SE-
ConvNet deep neural network (DNN) developed by Mahmud
et al. [Mahmud et al., 2022] had a 3-class hypoxemia classi-
fier accuracy of 96.5%. Finally, the smartphone implemen-
tation by Hoffman et al. [Hoffman et al., 2022] was able to
screen hypoxemia as SpO2 below 90% with an average sensi-
tivity and specificity of 81% and 79%, respectively. OxyCaps
performs reasonably well compared to these models, as seen
in Table.3. It is important to note that these methods used
a different range for classifying hypoxemia. Furthermore,
these approaches were developed for finger-based sensors but
do not translate directly for a shoulder-mounted sensor. This
is mainly due to variations in perfusion, skin tones, physiol-
ogy, and signal-to-noise ratio. This variation of the detection
site introduces complexity, leading to an uneven comparison
when evaluating other datasets in our model.

5.3 Limitations and Future Work
Our study leveraged the OxyCaps model for hypoxemia clas-
sification from PPG and motion signals detected off the
shoulder. While OxyCaps’s dynamic routing offers unique
advantages, it introduces computational complexity, making
it more time-consuming to train than Convolutional Neural
Networks (CNNs). The data collection posed its own set of
challenges. We utilized a custom-developed pulse oximeter,

which, although specific to our needs, is not FDA-grade and
is likely to be more noise-sensitive. Additionally, while FDA
cleared, the commercial pulse oximeter is not ICU grade, po-
tentially introducing variability in the SpO2 ground truth. The
dataset, derived from only 19 patients, does not fully repre-
sent the broader population’s PPG signal variability across
different skin tones and body types. The shoulder as a detec-
tion site influences PPG signal quality and subsequent hypox-
emia detection due to its inherently high signal-to-noise ratio
and the deltoid’s low perfusion, which pose challenges.

Several advancements can enhance the accuracy of our
classifier. Firstly, we calibrate our shoulder-based detection
device in a controlled hypoxemia lab that provides Drug-
Induced Apnea Testing. By doing so, we can train our model
against the gold standard arterial blood oxygen (SaO2) val-
ues, ensuring its precision in critical scenarios. Secondly, we
aim to provide take-home devices for OUD patients, allowing
us to collect PPG and motion data directly from the target de-
mographic. This real-world data can provide insights into the
unique challenges and nuances of overdose estimation in the
OUD community. Lastly, efforts will be directed towards en-
hancing the sensor’s hardware capabilities. By improving the
signal-to-noise ratio and incorporating multi-channel spectral
sensing, we aim to capture cleaner physiological data, creat-
ing a comprehensive and reliable detection system.

Due to the number of low apneic events, a 5-fold validation
approach had to be performed to analyze the model perfor-
mance instead of patient disjoint evaluation. Moreover, ex-
cluding a certain number of patients’ data and isolating them
only for test purposes severely affects the model training as it
will not have enough unique training samples for the severe
hypoxemia class. Therefore, data collected in a controlled
environment with a balanced distribution will be employed to
verify the model using patient hold-out tests.

6 Conclusion
Accurate hypoxemia detection from non-traditional sites is
pivotal for the evolution of patient-centric opioid-OD alert
systems. Such advancements not only enhance the preci-
sion of alert mechanisms but also pave the way for integrat-
ing opioid-OD reversal devices, especially given the shoul-
der’s status as a standard injection site for drugs like nalox-
one. Historically, SpO2 for in-hospital hypoxemia detection
has been predominantly centered around regions like the fin-
gertip, toe, forehead, and earlobe, primarily due to their high
perfusion index and favorable signal-to-noise ratio. However,
this work introduces a paradigm shift by proposing a capsule
network-based methodology for hypoxemia detection, lever-
aging spatial relationships between features while consider-
ing temporal delays. This innovative approach capitalizes on
distinctive features encompassing skin tone, individual physi-
ology, and motion dynamics, ensuring a comprehensive eval-
uation in real-world contexts. Significantly, our methodology
demonstrates high accuracy in estimating severe hypoxemic
states observed during an overdose from the shoulder. This
endeavor not only pushes the boundaries of opioid-OD detec-
tion but also underscores the potential of leveraging uncon-
ventional sites for critical medical applications.
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