
Raproto: An Open Source Platform for Rapid Prototyping of
Wearable Medical Devices

Amanda Watson
aawatson@seas.upenn.edu
University of Pennsylvania

Philadelphia, PA, USA

Hyonyoung Choi
hyonchoi@seas.upenn.edu
University of Pennsylvania

Philadelphia, PA, USA

Insup Lee
lee@seas.upenn.edu

University of Pennsylvania
Philadelphia, PA, USA

James Weimer
weimerj@seas.upenn.edu
University of Pennsylvania

Philadelphia, PA, USA

ABSTRACT
For researchers, especially in remote health monitoring and ubiqui-
tous computing, it is common to expend a significant amount of
time and effort to develop data collection systems that can be used
outside of the lab or clinic. These systems tend to be customized and
highly specific to the task at hand; thus, they are not general enough
to support other tasks. In this paper, we present Raproto, an open-
source, easy-to-use rapid prototyping platform that facilitates data
collection and visualization from sensors on commercially available,
off-the-shelf smartwatches. The Raproto platform consists of three
components: the smartwatch, communication protocol, and server.
These components support the collection, transmission, storage,
analysis, and visualization of data. We evaluate our platform on lim-
iting factors including the smartwatch battery life, data loss during
transmission, and data latency. Overall, we find that the smartwatch
can last for over 24 hours on a single charge, has little to no data
loss, and less than a second of data latency per transmission.

CCS CONCEPTS
• Human-centered computing → Mobile devices.

KEYWORDS
healthcare, open source, wearable technology, smartwatch
ACM Reference Format:
Amanda Watson, Hyonyoung Choi, Insup Lee, and James Weimer. 2021.
Raproto: An Open Source Platform for Rapid Prototyping of Wearable
Medical Devices. In Medical Cyber Physical Systems and Internet of Medical
Things (MCPS ’21), May 18, 2021, Nashville, TN, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3446913.3460315

1 INTRODUCTION
The increasing use of smart medical devices and wearable tech-
nology in healthcare has driven the development of remote health

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MCPS ’21, May 18, 2021, Nashville, TN, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8327-1/21/05. . . $15.00
https://doi.org/10.1145/3446913.3460315

monitoring, improving patient outcomes and reducing the overall
cost of care. Due to its success, the remote health monitoringmarket
is expected to grow to more than $4.1 billion by 2028 [1]. However,
significant time, effort, and money must be expended to implement
remote health monitoring systems, as custom monitoring devices
are needed, and platforms to aggregate, store, and analyze the data
from the devices must be developed. Unlike the costly, custom de-
vices developed for remote health monitoring, smart devices are
inexpensive and already have many of the sensors used for personal
remote health monitoring. Smart devices also have a pre-existing
code base and easy to use user interface that can be leveraged for
custom app development. While these devices are not clinically
tested, they provide researchers with a more cost-effective method
to develop rapid prototypes in their studies.

Commercially available smart devices provide computing ability,
storage, connectivity, and a wide variety of sensors, housed in a
portable frame with a familiar and easy-to-use interface. Smart-
watches are commercially available smart wearable devices that
are comfortable to wear and have become popular among the gen-
eral population. In fact, by 2026, it is expected that 157.2 million
smartwatches will be sold worldwide [7]. Their high adoption rate
highlights their user-friendliness, comfort when worn, and useful
functionalities. These standalone wearable devices provide continu-
ous data collection, remote access and control, and communication
with users, allowing them to be a productive research tool. Further,
smartwatches do not have to be worn on the wrist, increasing their
usefulness for data collection.

In recent years, there has been increasing interest in utilizing
smartwatches for research on body sensing [9]. Limited work has
been done to create easy-to-use, open-source platforms to promote
rapid prototyping with smartwatches. WaDa [6] is a standalone
Android-based smartwatch app that facilitates data collection from
the sensors on a smartwatch.While theWaDa smartwatch and desk-
top app are freely available for research and academic purposes, it
is not open source; thus, it cannot be customized to specific tasks.
ROAMM [3] is a Tizen-based smartwatch framework for online
assessment and mobility monitoring leveraging a smartwatch ap-
plication and a remotely-connected server. While this framework
is not open-source, the code can be requested under limited circum-
stances. This work aims to develop a fully open-source platform
for use in remote health monitoring through the combination of a
smartwatch-based application and a remote server. While we focus

1

https://doi.org/10.1145/3446913.3460315
https://doi.org/10.1145/3446913.3460315
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3446913.3460315&domain=pdf&date_stamp=2021-05-18

MCPS ’21, May 18, 2021, Nashville, TN, USA Watson, et al.

on the smartwatch, other smart devices can be connected to our
platform.

We summarize our contributions as follows:
• We present Raproto, an open-source extensible platform for
rapid prototyping of wearable medical devices. The Raproto
system is made up of a smartwatch application, communi-
cation protocol, and server for the collection and storage
of data. In this paper, we focus on creating a Tizen-based
smartwatch application, but other smart devices, including
smartphones and non-Tizen smartwatches, can be used.

• Our experimental results show that our system is very cus-
tomizable in terms of battery, data loss, and data latency and
the trade-offs between them. We observe that a smartwatch
with the Raproto application running can last for more than
24 hours on a single charge, has little to no data loss, and
experiences less than one second of data latency.

The remainder of the paper is structured as follows. First, we
describe the components of our Raproto platform: smartwatch, com-
munication protocol, and server. Second, we evaluate our platform
based on the limiting factors: battery life, data loss, and data latency.
Third, we discuss the future directions for the Raproto platform.
Finally, we wrap up with the conclusion.

2 RAPROTO PLATFORM

Figure 1: Raproto Platform

The Raproto platform is made up of three components: the smart-
watch application, communication protocol, and the server. The
smartwatch application facilitates the collection and storage of sen-
sor data. The communication protocol enables the transfer of the
sensor data collected on the smartwatch to the remote server and
transfers commands from the remote server to the smartwatch. The
remote server supports the configuration of the smartwatches, data
storage, processing, and visualization. The Raproto platform and
its components are shown in Figure 1.

2.1 Smartwatch Application
The Raproto application runs directly on the smartwatch without
the need for a companion smartphone application. Raproto’s inde-
pendence makes it more convenient and less constrained during
use than apps that require a companion application through a con-
nected smartphone. The application records sensor data, stores
and transmits that data, and features an easy-to-navigate UI for

setup. The application was developed on the Samsung Galaxy Ac-
tive smartwatches. These smartwatches run on the Tizen operating
system, which provides APIs for managing and interacting with
sensors and communication protocols. While our application tar-
gets the Tizen-based Samsung Galaxy Active, it can be adapted for
other smartwatches such as those running Android WearOS. The
smartwatch application repository is available at [8]. In practice,
installation and setup from source takes approximately 30 minutes
for users regardless of smartwatch programming experience.

(a) Configuration (b) Main Screen (c) Data Collection

Figure 2: User Interface of the Smartwatch Application

User Interface. The user interface, shown in Figure 2 serves two
purposes: configuration and starting or stopping data collection.
The Raproto application requires an initial configuration to set up
the data collection. The user can accomplish the configuration task
by opening the settings menu and pressing the configuration button
as shown in Figure 2a. Once pressed, it loads the configuration
settings from the remote server. In most cases, this includes the
device name, sensor configurations, battery management settings,
and data transmission settings. Following the configuration step,
the user can begin collecting data. Data collection is started and
stopped using a toggle switch as shown in Figure, 2b. Once started,
the application turns the background green as shown in Figure
2c to inform the user that data is being collected. The application
will continue to collect data in the background if the application is
closed or switched to another screen. The only explicit method to
stop data collection is to turn it off via the toggle switch. If an error
occurs and data is no longer be collected, the screen background
turns red to alert the user. The user can then restart the application
and resume collecting data.

Watch Configuration. The Raproto application is designed to
support a wide range of monitoring applications – each possibly
having different requirements for data collection, battery life, and
latency. To allow for on-the-fly customization to specific applica-
tions, the Raproto smartwatch application is configured via a JSON
string to control Wi-Fi usage, sensor selection, and transmission
rates. By pressing the configuration button (Figure 2a) Raproto
will connect to the remote server over Wi-Fi using MQTT mid-
dleware [2] (see Section 2.2). Once connected, when the watch
publishes on a customizable configuration-request topic (default:
v1/devices/me/attributes/request/1) the server will respond by pub-
lishing on the customizable configuration-received topic (default:
v1/devices/me/attributes/response/+). The default publish and sub-
scribe topics are chosen to be consistent with the default settings
of Thingsboard [10] (as described in Section 2.3). We note that

2

Raproto: An Open Source Platform for Rapid Prototyping of Wearable Medical Devices MCPS ’21, May 18, 2021, Nashville, TN, USA

the Raproto watch application runs independently of Thingsboard,
only borrowing the Thingsboard API for seamless integration (if
desired).

Data Collection. The Raproto application collects data from the
available sensors on the Samsung Galaxy Active. Currently, it sup-
ports the accelerometer, gyroscope, gravity sensor, heart rate moni-
tor, photoplethysmograph, and battery level sensor. The application
is customizable and any combination of sensors may be chosen. The
sampling frequency of each sensor is also configurable. These cus-
tomizations are chosen remotely and sent to the smartwatch during
watch configuration. This allows the smartwatch to be updated
whenever it is required without the need to return the smartwatch
to the developer. The collected sensor data is loaded into a JSON
format consistent with Thingsboard [10] and either immediately
transmitted to the server or stored until it can be transmitted to the
server.

Data Storage. Collected sensor data is not always immediately
transmitted to the remote server. When this occurs, the data needs
to be stored so that it can be transmitted at a later time without
any loss of data. Our application provides 40 megabytes of buffer
storage. Once a wireless connection is established, data is packaged
and sent in 10 KB messages. The size of the messages as well as the
size of the buffer storage can be customized depending on the needs
of the application. Providing data storage allows our platform to
function seamlessly in environments where wireless connections
are not readily available or reliable.

Battery Management. Smartwatch battery life has improved in
recent years, but in research studies, battery life is still a limiting
factor [4]. The largest drains on the battery are the display, volume
of sensor data, and Wi-Fi radio settings.

The largest consumer of smartwatch battery is the display as for
many smartwatches; it remains on even while in sleep mode [5].
While our application cannot directly control all of the settings that
will extend the smartwatch’s battery life, we provide the user with
instructions for a one-time configuration for maximal battery life.
This configuration takes less than five minutes to set up which is
nominal given the extended battery life it provides. For example,
we ask the user to adjust the display settings so the watch face is
not always on and to set the watch face to a static black and white
screen.

The volume of sensor data is affected by the number of sensors
collecting data and their sampling rates. As more sensors are added,
and as sampling rates are increased, the volume of sensor data
also grows. In research studies, it is common to collect data from
all sensors simultaneously at high sampling rates to ensure high-
quality data is collected. Since the data required by these studies,
we acknowledge that battery drain occurs due to this and mitigate
the effects this causes in data transmission.

The settings of the Wi-Fi radio can provide battery savings by
controlling how often the radio transmits data and when it turns
on and off. The smartwatch application transmits data on a config-
urable schedule; the default is every 60 seconds but this should be
adjusted to ensure we do not fill the buffer to avoid data loss. The
more time that can be spent between data transmission events pro-
motes more battery savings. To enhance these battery life savings,

Raproto can also control the Wi-Fi connection by turning it on and
off based on the transmission settings. This compounds the battery
savings described above as the further apart transmission event
occur means that the Wi-Fi radio will be off for longer periods of
time. This is not feasible with all Wi-Fi protocols, so by default, we
set the Wi-Fi to always remain on.

2.2 Communication Protocol
MQTT [2] is a publish/subscribe messaging protocol designed to
connect remote devices with a small footprint and minimal network
bandwidth consumption. It allows for telemetry to be sent from
the smartwatches to the server and commands to be sent from
the server to the smartwatches. MQTT supports three levels of
quality of service- Level 0 is the lowest-overhead method where
the smartwatch will send telemetry without any acknowledgment
that the server has received it. Level 1 guarantees that the server
receives the telemetry by sending an acknowledgment back to the
smartwatch. If the acknowledgment is lost, then the smartwatch
will resend its telemetry until it receives an acknowledgment. This
can create duplicate telemetry received by the server, but since the
data is sent with a timestamp, duplicates will be easy to identify.
Level 2 guarantees the telemetry will be received exactly one time
by completing a "handshake" to confirm that the telemetry has been
sent and that the acknowledgment has been received. Our system
defaults to Level 1, but both other levels are supported.

2.3 Remote Server
The server provides a platform to register new devices, remotely
configure device settings, store data, process data, and customize
visualizations to suit the task at hand. For the purposes of this work,
we leveraged an open-source internet of things platform, Things-
board [10]; but custom-built applications or other internet of things
platforms can be used as well if they support communication via the
MQTT protocol descibed in the previous subsection. Thingsboard
is available through a web portal allowing researchers to easily
access it through their internet browser.

Device Administration. The device administration module pro-
vides the ability to configure and communicate with all active
Raproto smartwatch applications. This module provides researchers
with a convenient and fast way to reconfigure smartwatches re-
motely via a web portal without the need to collect the physical
watches. This is accomplished through a bidirectional communi-
cation in which the server sends configuration parameters to the
smartwatch and receives sensor data from the smartwatches. In
Thingsboard, this is done in the device administration portal as
shown in Figure 3 by completing the following steps. First, add
a new watch to the system. Second, configure the smartwatch at-
tributes and data collection parameters as suits the deployment
of Raproto. Third, press update configuration on the smartwatch
running the Raproto application. Lastly, check that the smartwatch
connection and configuration are successful by viewing the latest
telemetry. While the device administration portal is mainly for
the configuration of the smartwatches, it is a great resource when
debugging connection issues.

3

MCPS ’21, May 18, 2021, Nashville, TN, USA Watson, et al.

Figure 3: Device Administration Portal

Data Storage. Once the data is transmitted from the smartwatch
to the server, it is stored in a database from which it can be pro-
cessed, analyzed, and visualized. Specifically, we use TimescaleDB
to store our time series data. It is an open-source database opti-
mized for time-series data to provide fast storage of new entries
and quick processing of complex analysis. To interact directly with
the database, SQL queries can be run. The database is not directly
accessible for end-users. To interact with the data they must use
dashboards that Thingsboard provides.

Figure 4: Device Processing Rule Chain

Data Processing. The remote server facilitates basic data process-
ing enabling meaningful analysis and actions based on the data as
it is received. We choose to run this on the remote server instead
of the smartwatch as the server has more computing power, and
battery life is not a concern. Thingsboard supports data filtering,
enrichment, analytics, transformation, and rule chains. Rule chains
provide the ability to transform and normalize the data stored in the
database. An example of a rule chain that checks and alerts the user
of a low battery for a smartwatch running the Raproto application
is shown in Figure 4. It also allows for alarms and notifications to
be sent to the user based on conditions over the incoming telemetry

data, including sensor data, attribute updates, device inactivity, and
user actions on the smartwatch.

Data Visualization. An essential component of the remote server
is the ability for a user to visualize the data that has been collected
and processed. Within these visualizations, the user should be able
to view live streaming and static data, receive notifications about
alerts, and manipulate the displayed data. While there are many
available visualization platforms, we will discuss Thingsboard. In
Thingsboard, dashboards are created and customized to display
time-series sensor data. A single dashboard can contain many wid-
gets which are pre-programmed to display data in a particular
fashion. For example, in Figure 5 there are two different types of
widgets, two digital scales on the left and a time series plot on the
right. This is only a small example of the pre-programmed widgets
available in Thingsboard. These widgets make displayed data eas-
ier to view and interpret at a glance, enhancing the dashboard’s
usefulness. The dashboards are web-based and can be shared and
viewed by users other than the developer.

3 EVALUATION
We evaluate Raproto based on three metrics: battery life, data loss,
and data latency. Battery life is one biggest limiting factor of using
smartwatches in research studies. Data loss is important to take
into account depending on the nature of the study at hand. Data
latency is important in any system that provides feedback to the
user from the server.

3.1 Battery Life
As previously discussed, smartwatch battery life is a limiting factor
in research studies. The most significant drains on the battery life
comes from the display, volume of sensor data, volume of radio
traffic, and Wi-Fi radio usage [5]. Here we evaluate how these
characteristics affect battery life and how effective our mitigation
strategies are at preventing battery drain.

Display. Weprovide instructions for setting up the smartwatch to
conserve as much battery as possible. This is a one-time, easy-to-do,
and quick configuration process that mitigates battery drain from
properties of the smartwatch that do not concern our application.
The instructions will vary on various models of smartwatches, but
the overall premises will remain the same such as allowing the
screen to sleep. Overall, we see a gain of approximately 4.8 hours
of battery life with our quick and easy configuration process.

Table 1: Expected Battery Life with Accelerometers at Vari-
ous Sampling Rates

Sampling Rate (Milliseconds) Expected Battery Life (Hours)
20 28.58
10 18.18
5 12.5
1 7.14

Sensor Data Volume. We discuss the effects a large volume of data
has on battery life. We evaluate two parameters: sampling rate and

4

Raproto: An Open Source Platform for Rapid Prototyping of Wearable Medical Devices MCPS ’21, May 18, 2021, Nashville, TN, USA

Figure 5: Dashboard

Table 2: Sensor Combinations Expected Battery Life

Accel Gyro Gravity HRM PPG Battery Life
x 28.6 hrs

x 28.6 hrs
x 28.6 hrs

x 33.3 hrs
x 28.6 hrs

x x 28.6 hrs
x x x 25.0 hrs
x x x x 22.2 hrs
x x x x x 22.2 hrs

number of sensors. First we show that as sampling rate increases,
battery life increase by only collecting accelerometer data in Table
1. Second, we show the impact that collecting data from multiple
sensors has on the battery life in Table 2. We also show the impact
each individual sensor has on the battery life. Overall we see that
as the volume of sensor data increases, the battery life decreases.

Wi-Fi Radio Settings. We provide a Wi-Fi configuration that con-
serves power at the cost of some data latency. The Raproto power
savings Wi-Fi configuration turns the Wi-Fi radio off while not
transmitting data to the remote server. We observed this configura-
tion saves approximately 4.8 hours of battery life. This is significant
in studies where the goal is to collect data over long periods of time
where near-instantaneous data transmission is not required.

3.2 Data Loss
MQTT has three levels of service providing different guarantees on
data transmission. In this experiment, we on vary the MQTT level
of service. We evaluate each level of service for data points lost
and duplicated data entries recorded in the database. We calculate
the number of data points lost by comparing the timestamps to

Table 3: Data Loss and Duplication

MQTT Service Level Total Lost Duplicated
0 8,965 29 0
1 3,879 0 5
2 47,550 0 0

the sampling frequency of the sensor. We check for duplicates by
checking for duplicate timestamps.We display these results in Table
3 and explain them in the following paragraphs.

The lowest level of MQTT service, 0 does not guarantee that the
data has been received by the server. It sends the datapoint at hand
and then moves on to the next without verifying the first data point
was received. Level 0 showed 29 data points lost among the total of
8,965 data points transmitted account for 0.32% of the data sent. We
observed no duplicate data points, which is expected as this level
of service does not resend data that could have been lost.

Our system defaults to MQTT service level 1, in which the smart-
watch is assured the data has been received by the server after it is
sent. Because it is only concern is that the data is received on the
server end, data can be sent multiple times and thus duplicated in
the database. In the battery experiments above, we used this default
setting so we leverage that data here. We verified that there was
no data loss among all 3,879 data points collected. We calculated
the number of duplicated entries to be five 5 data points or 0.12%
of the total data received.

The highest level of MQTT service guarantees that data is re-
ceived only once by the server. This should take care of the data loss
and duplication seen in the previous tests. We verified that level 2
showed no data loss or duplicate entries over 47,550 datapoints.

It should be noted that our data loss experiment was carried out
is an environment that is at a low risk for data loss. Each level of
service is suited to a different type of environment. For example, in

5

MCPS ’21, May 18, 2021, Nashville, TN, USA Watson, et al.

a medical setting where data loss is higher due to being near strong
electromagnetic equipment, level 2 should be used to ensure data
is received and not frequently duplicated. In low-risk transmission
settings and when every data point collected is not critical, level 0
will extend the battery life allowing for longer studies. In studies
where every data point is critical and speed is of importance, level
1 should be utilized.

3.3 Data Latency
The time accrued between data collection and the receipt of data by
the server is influenced by the frequency at which Raproto trans-
mits data and the transit time between the smartwatch and the
server. The frequency at which we transmit data is a configurable
parameter that can be tuned to meet the needs of the specific ap-
plication. If we transmit data as is collected, we see a latency of
less than one second between when the data is transmitted and the
response is received. MQTT level of service also affects the data
latency as the higher the level of service, the more time is needed to
guarantee a data point has been received only once. For studies that
require very low latency, service level 0 provides the least amount
of transit time but there is a trade off with data loss.

4 EXTENSIBILITY
There are many future directions for the Raproto System to be
explored. In this section, we discuss supporting alternate operating
systems, making our Raproto Application available on app stores,
and adding supporting smartwatches with cellular radios to allow
our system to transmit data in environments without Wi-Fi.

4.1 Alternate OS Support:
Samsung Tizen-based smartwatches are not the only smartwatches
available on the market. The other smartwatches provide different
functionalities such as new sensors and different wireless radios.
To make Raproto more accessible, we leave it up to future work to
build applications for other smartwatches such as those that run
Android Wear OS. While the native applications must be rebuilt to
suit the new environment, the functionality and structure of the
current Tizen-based Raproto application can be reused. Once the
new applications are built, they should be tested and verified on
the new smartwatches to ensure the new hardware is working and
compatible with Raproto. From the server-side, the setup to add
new sensors is quick and easy.

4.2 Application Store Availability
The Raproto application currently must be sideloaded via Tizen stu-
dio. While we provide instructions for user on how to accomplish
this, and most users can fully set up their watch in approximately
30 minutes, it is not user-friendly for non-developers as users must
download Tizen Studio and be comfortable enough using a termi-
nal to connect their smartwatch to their computer. To simplify this
process, especially for non-developers, we plan to make Raproto
available for download on the Tizen App Store. As Raproto applica-
tions based in other operating systems are developed, we plan to
put them on their respective app stores as well.

4.3 Cellular Enabled Smartwatches
Due to advances in smartwatch technology, some smartwatches
now have cellular radios integrated directly. The problem that arises
is that cellular radios are power-hungry. This causes a more rapid
battery drain than seen with the smartwatches in our study. How-
ever, cellular radios can enable data transmission in environments
where Wi-Fi cannot be connected. When adding this functionality,
a trade-off between battery life and data availability can be evalu-
ated and optimized for specific projects. Another way of reducing
the battery drain is to choose the lowest power radio available to
transmit data so the cellular radio will only be usedwhen necessary.

5 CONCLUSION
In this paper, we presented Raproto, an open-source, easy-to-use
rapid prototyping platform that facilitates data collection from sen-
sors on commercially available off-the-shelf smartwatches. This
platform provides researchers, especially in remote health mon-
itoring and ubiquitous computing, an quick, simple to use, and
customizable solution for developing data collection systems. We
evaluated our platform and observed that a smartwatch with the
Raproto application running lasted for over 24 hours on a single
charge, has almost no data loss, and experienced less that one sec-
ond of data latency.

ACKNOWLEDGMENTS
This research was supported by the U.S. National Science Foun-
dation under grant 1915398 and the National Institute of Health
under grants R01-EB029363, R01-EB029767, and R43-MH121205.
The project was funded, in part, under a grant from the Pennsylva-
nia Department of Health.

REFERENCES
[1] Grandview [n.d.]. Remote Patient Monitoring System Market Growth &

Trends. https://www.grandviewresearch.com/press-release/global-remote-
patient-monitoring-devices-market. Pubished: January, 2021.

[2] U. Hunkeler, H. L. Truong, and A. Stanford-Clark. 2008. MQTT-S — A pub-
lish/subscribe protocol for Wireless Sensor Networks. In 2008 3rd International
Conference on Communication Systems Software and Middleware and Workshops
(COMSWARE ’08). 791–798. https://doi.org/10.1109/COMSWA.2008.4554519

[3] Matin Kheirkhahan, Sanjay Nair, Anis Davoudi, Parisa Rashidi, Amal A Wani-
gatunga, Duane B Corbett, Tonatiuh Mendoza, Todd MManini, and Sanjay Ranka.
2019. A smartwatch-based framework for real-time and online assessment and
mobility monitoring. Journal of biomedical informatics 89 (2019), 29–40.

[4] Christine E King and Majid Sarrafzadeh. 2018. A survey of smartwatches in
remote health monitoring. Journal of healthcare informatics research (2018), 1–24.

[5] Xing Liu and Feng Qian. 2016. Poster: measuring and optimizing android smart-
watch energy consumption. In Proceedings of the 22nd Annual International Con-
ference on Mobile Computing and Networking (MobiCom). 421–423.

[6] Md Abu Sayeed Mondol, Ifat A Emi, Sirat Samyoun, M Arif Imtiazur Rahman,
and John A Stankovic. 2018. WaDa: An Android Smart Watch App for Sensor
Data Collection. In Proceedings of the 2018 ACM International Joint Conference
and 2018 International Symposium on Pervasive and Ubiquitous Computing and
Wearable Computers. 404–407.

[7] Mordor [n.d.]. Smartwatch Market - Growth, Trends, COVID-19 Impact, and
Forecasts (2021 - 2026). https://www.mordorintelligence.com/industry-reports/
smartwatch-market.

[8] Raproto [n.d.]. Raproto-Tizen. https://github.com/weimerj/Raproto-Tizen.
[9] Nour Takiddeen and Imran Zualkernan. 2019. Smartwatches as IoT edge devices:

A framework and survey. In 2019 Fourth International Conference on Fog and
Mobile Edge Computing (FMEC). IEEE, 216–222.

[10] Thingsboard [n.d.]. ThingsBoard: Open-source IoT Platform. https://thingsboard.
io.

6

https://www.grandviewresearch.com/press-release/global-remote-patient-monitoring-devices-market
https://www.grandviewresearch.com/press-release/global-remote-patient-monitoring-devices-market
https://doi.org/10.1109/COMSWA.2008.4554519
https://www.mordorintelligence.com/industry-reports/smartwatch-market
https://www.mordorintelligence.com/industry-reports/smartwatch-market
https://github.com/weimerj/Raproto-Tizen
https://thingsboard.io
https://thingsboard.io

	Abstract
	1 Introduction
	2 Raproto Platform
	2.1 Smartwatch Application
	2.2 Communication Protocol
	2.3 Remote Server

	3 Evaluation
	3.1 Battery Life
	3.2 Data Loss
	3.3 Data Latency

	4 Extensibility
	4.1 Alternate OS Support:
	4.2 Application Store Availability
	4.3 Cellular Enabled Smartwatches

	5 Conclusion
	Acknowledgments
	References

