

Magneto: Joint Angle Analysis Using an Electromagnet-Based Sensing Method

Amanda Watson*, Andrew Lyubovsky⁺, Kenneth Koltermann⁺, Gang Zhou⁺

*University of Pennsylvania

⁺William and Mary

Introduction

- Knowledge of joint angles is used for:
 - Preventing injuries
 - Decreasing rehabilitation time
 - Accurate activity monitoring
- Wearable sensors are commonly used for monitoring joint angles since they are directly worn on the body

PRECISE

Challenges

- We want to design a wearable sensor that is:
 - Affordable
 - Low Power
 - Widely Available
 - Allows for Sensing of Joint Angles
- Magnetic field sensors When combined with magnets, they allow smaller scale sensing, and can be used for joint angle tracking

Outline

- Introduction
- Magneto Hardware
- Elimination of Environmental Interference
- Localization of the Electromagnet
- Elbow Flexion Angle Pilot Study
- Future Work
- Conclusion

Magnetic Sensing

Magnetic Sensing B shimme

Environment-less Sensing

Evaluation

(a) Outside

(b) Lab

(e) Stairwell

(c) Gymnasium

(f) Elevator

Localization of the Electromagnet

Elbow Angles Application

Elbow Motion

Elbow Angles

- User Study
 - 13 Participants (7F/6M)
 - 130 Angles per participant

Elbow Angles Results

Future Work

- Motion Analysis
- Shoulder Support in 3 Dimensions
- Increasing the Strength of the Electromagnet
- Increasing the Cycling Rate
- Multiple Electromagnets

Conclusion

- Magneto uses the combination of an electromagnet and magnetometer to remove environmental interference from magnetic field readings in a dynamically changing environment.
- Given this **purified reading**, we **localized** the electromagnet with respect to the magnetic field reader.
- We completed a **pilot study** where we calculated elbow angles to the nearest 15° with **93.8% accuracy**.

THANK YOU! $PRE \downarrow \downarrow \downarrow ISE STATES ENGINEERING AND INTEGRATED SYSTEMS ENGINEERING$

http://precise.seas.upenn.edu

